Zendesk Chat to Panoply

This page provides you with instructions on how to extract data from Zendesk Chat and load it into Panoply. (If this manual process sounds onerous, check out Stitch, which can do all the heavy lifting for you in just a few clicks.)

What is Zendesk Chat?

Zendesk Chat is a real-time online chat application that businesses can use to engage with customers. It was originally marketed as Zopim. Zendesk acquired the company that developed it in 2014, integrated it with Zendesk, and renamed it Zendesk Chat in 2016.

What is Panoply?

Panoply provides a Smart Cloud Data Warehouse platform that lets users set up a new Amazon Redshift instance in just a few clicks. It uses machine learning algorithms to accomplish complex tasks like schema building, data mining, modeling, scaling, performance tuning, security, and backup. Panoply can import data with no schema, no modeling, and no configuration, and you can use analysis, SQL, and visualization tools on data in Panoply just as you would if you were creating a Redshift data warehouse on your own.

Getting data out of Zendesk Chat

Zendesk Chat provides a REST API that lets you get information about accounts, agents, roles, and other elements, all of which have different syntax and return JSON objects with different attributes. If, for example, you wanted to retrieve a list of agents, you would call GET /api/v2/agents. This call has a couple of optional parameters that let you specify a range of agent IDs.

Sample Zendesk Chat data

The Zendesk Chat API returns data in JSON format. For example, the result of a call to retrieve agents might look like this:

[
  {
    "id" : 5,
    "first_name" : "John",
    "last_name" : "Doe",
    "display_name" : "Johnny",
    "create_date" : "2017-09-30T08:25:09Z",
    "email" : "johndoe@gmail.com",
    "roles" : {
      "owner": false,
      "administrator": false
    },
    "role_id": 3,
    "enabled" : 1,
    "departments" : []
  },
  {
    "id" : 8,
    "first_name" : "Kevin",
    "last_name" : "Doe",
    ...
  }
]

Preparing Zendesk Chat data

If you don't already have a data structure in which to store the data you retrieve, you'll have to create a schema for your data tables. Then, for each value in the response, you'll need to identify a predefined datatype (INTEGER, DATETIME, etc.) and build a table that can receive them. Zendesk Chat documentation should tell you what fields are provided by each endpoint, along with their corresponding datatypes.

Complicating things is the fact that the records retrieved from the source may not always be "flat" – some of the objects may actually be lists. This means you'll likely have to create additional tables to capture the unpredictable cardinality in each record.

Loading data into Panoply

When you've identified all the columns you want to insert, use the Reshift CREATE TABLE statement to make a table in your data warehouse to receive the data.

Now you can replicate your data. It may seem as if the easiest way to do that (especially if there isn't much of it) is to build INSERT statements and add data to your table row by row. If you have any experience with SQL, this probably will be your first inclination. But beware! Redshift isn't optimized for inserting data one row at a time. If you have a high volume of data to be inserted, you should instead load the data into Amazon S3 and then use the Redshift COPY command to import it into Redshift.

Keeping Zendesk Chat data up to date

At this point you've coded up a script or written a program to get the data you want and successfully moved it into your data warehouse. But how will you load new or updated data? It's not a good idea to replicate all of your data each time you have updated records. That process would be painfully slow and resource-intensive.

Instead, identify key fields that your script can use to bookmark its progression through the data and use to pick up where it left off as it looks for updated data. Auto-incrementing fields such as updated_at or created_at work best for this. When you've built in this functionality, you can set up your script as a cron job or continuous loop to get new data as it appears in Zendesk Chat.

And remember, as with any code, once you write it, you have to maintain it. If Zendesk modifies its API, or the API sends a field with a datatype your code doesn't recognize, you may have to modify the script. If your users want slightly different information, you definitely will have to.

Other data warehouse options

Panoply is great, but sometimes you need to optimize for different things when you're choosing a data warehouse. Some folks choose to go with Amazon Redshift, Google BigQuery, PostgreSQL, or Snowflake, which are RDBMSes that use similar SQL syntax. If you're interested in seeing the relevant steps for loading data into one of these platforms, check out To Redshift, To BigQuery, To Postgres, and To Snowflake.

Easier and faster alternatives

If all this sounds a bit overwhelming, don’t be alarmed. If you have all the skills necessary to go through this process, chances are building and maintaining a script like this isn’t a very high-leverage use of your time.

Thankfully, products like Stitch were built to solve this problem automatically. With just a few clicks, Stitch starts extracting your Zendesk Chat data via the API, structuring it in a way that is optimized for analysis, and inserting that data into your Panoply data warehouse.